If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+49t+15=0
a = -4.9; b = 49; c = +15;
Δ = b2-4ac
Δ = 492-4·(-4.9)·15
Δ = 2695
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2695}=\sqrt{49*55}=\sqrt{49}*\sqrt{55}=7\sqrt{55}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-7\sqrt{55}}{2*-4.9}=\frac{-49-7\sqrt{55}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+7\sqrt{55}}{2*-4.9}=\frac{-49+7\sqrt{55}}{-9.8} $
| 5u=18+3u | | 3.9n+3.46=3.7n | | -4.9t^2+49t-15=0 | | -17-14k=-15k | | -4.9t^2+49-15=0 | | -3-17n=-20n-15 | | F(x)=5x+2-3x+8+3x | | -4-11z=-11z-4 | | 19+6q+16=-20-5q | | 3e+19-e=25 | | 8f+2=7f-10+3f | | 13=a-2 | | 3.1m=59.66 | | 6+75(d)=1,000 | | 59.66=3.1m | | 2x-6+x-10=x+2+x+4 | | 8(x-7)=-46+7x | | (5x-6)-3x=180 | | (4x+12)+(3x+11)=180 | | -8+6m=-10+5m | | 3(5x+2)=361 | | a+4(3a=7)=80 | | -5s+1=s-9-7s | | a=4(3a=7)=80 | | -7g+7=-3-5g | | 8+3c=c | | 7m+1=-8+6m | | 5.2x+12=53.6 | | 9.5=6/x | | —2/3n=-13 | | -x^2+6x-4=5 | | 18-7n-1=-9 |